Graph-coloring ideals
Nullstellensatz certificates,
Gröbner bases for chordal graphs,
and hardness of Gröbner bases

David Rolnick
Massachusetts Institute of Technology
drolnick@mit.edu

Joint work with Jesús De Loera, Susan Margulies, Michael Pernpeintner,
Eric Riedl, Gwen Spencer, Despina Stasi, Jon Swenson

International Symposium on Symbolic and Algebraic Computation
Bath, July 2015
Overview

- Polynomial ideals
- Graph-coloring
- Algorithms
- Hardness
- Scheduling
- Pattern matching
- Image segmentation
- Data mining
Graph-coloring problem:

- Proper coloring: no two neighboring vertices the same color
- Is there a proper coloring with \(k \) colors?
Graph-coloring

Graph-coloring problem:
- Proper coloring: no two neighboring vertices the same color
- Is there a proper coloring with k colors?

Approach:
- k-coloring \Leftrightarrow system of polynomial equations
- Solve the system or prove unsolvable
The coloring ideal

- Graph $G = (V, E)$
- Variable x_i for each vertex $i \in V$
- Coloring ideal $\mathcal{I}_k(G)$ generated by:
 - **Vertex polynomials**
 $$\nu_i(x) := x_i^k - 1, \quad \forall i \in V$$
 - **Edge polynomials**
 $$\eta_{ij}(x) := \frac{x_i^k - x_j^k}{x_i^k - x_j^k}, \quad \forall ij \in E$$

Solutions $x \iff$ proper k-colorings [Bayer 1982]
The coloring ideal

- Graph $G = (V, E)$
- Variable x_i for each vertex $i \in V$
- Coloring ideal $\mathcal{I}_k(G)$ generated by:

 Vertex polynomials
 $$\nu_i(x) := x_i^k - 1, \ \forall i \in V$$

 Edge polynomials
 $$\eta_{ij}(x) := \frac{x_i^k - x_j^k}{x_i - x_j}, \ \forall ij \in E$$

- Solutions $x \iff$ proper k-colorings [Bayer 1982]
The coloring ideal

- Graph $G = (V, E)$
- Variable x_i for each vertex $i \in V$
- Coloring ideal $\mathcal{I}_k(G)$ generated by:
 - **Vertex polynomials** $\nu_i(x) := x_i^k - 1, \quad \forall i \in V$
 - **Edge polynomials** $\eta_{ij}(x) := \frac{x_i^k - x_j^k}{x_i - x_j}, \quad \forall ij \in E$

- Solutions $x \Leftrightarrow$ proper k-colorings [Bayer 1982]
- Need tool for finding solutions to a polynomial system
Gröbner bases

- Polynomial ideal \(I \)
- Leading terms of \(f \in I \) form leading term ideal \(L(I) \)
- Gröbner basis: \(g_1, g_2, \ldots, g_m \in I \), leading terms generate \(L(I) \)
- Implies that \(\{g_i\} \) form basis for \(I \)

Example:
\[I = \langle x + z, x + y \rangle \]
with lexicographic monomial order \(x > y > z \)
\(\{x + z, y - z\} \) is a Groebner basis for \(I \)

Check:
\[\langle x, y \rangle = L(I) \]

Gröbner basis \(\Rightarrow \) solutions to ideal
Gröbner bases

- Polynomial ideal \(\mathcal{I} \)
- Leading terms of \(f \in \mathcal{I} \) form leading term ideal \(\mathcal{L}(\mathcal{I}) \)
- **Gröbner basis:** \(g_1, g_2, \ldots, g_m \in \mathcal{I} \), leading terms generate \(\mathcal{L}(\mathcal{I}) \)
- Implies that \(\{g_i\} \) form basis for \(\mathcal{I} \)
- Example:
 - \(\mathcal{I} = \langle x + z, x + y \rangle \) with lexicographic monomial order \(x > y > z \)
 - \(\{x + z, y - z\} \) is a Groebner basis for \(\mathcal{I} \)
 - Check: \(\langle x, y \rangle = \mathcal{L}(\mathcal{I}) \)
Gröbner bases

- Polynomial ideal \mathcal{I}
- Leading terms of $f \in \mathcal{I}$ form leading term ideal $\mathcal{L}(\mathcal{I})$
- Gröbner basis: $g_1, g_2, \ldots, g_m \in \mathcal{I}$, leading terms generate $\mathcal{L}(\mathcal{I})$
- Implies that $\{g_i\}$ form basis for \mathcal{I}
- Example:
 - $\mathcal{I} = \langle x + z, x + y \rangle$ with lexicographic monomial order $x > y > z$
 - $\{x + z, y - z\}$ is a Groebner basis for \mathcal{I}
 - Check: $\langle x, y \rangle = \mathcal{L}(\mathcal{I})$
- Gröbner basis \Rightarrow solutions to ideal
Gröbner basis of coloring ideal

Coloring ideal for $k = 3$:

$$\langle x_3^1 - 1, x_3^2 - 1, x_3^3 - 1, x_3^4 - 1, x_2^1 + x_1 x_2 + x_2^2, x_2^1 + x_1 x_3 + x_2^3, x_2^2 + x_2 x_3 + x_2^4, x_2^3 + x_3 x_4 + x_2^4 \rangle$$
Gröbner basis of coloring ideal

Coloring ideal for $k = 3$:

$$\langle x_1^3 - 1, x_2^3 - 1, x_3^3 - 1, x_4^3 - 1, x_1^2 + x_1 x_2 + x_2^2, x_1^2 + x_1 x_3 + x_3^2, x_1^2 + x_1 x_4 + x_4^2, x_2^2 + x_2 x_3 + x_3^2, x_2^2 + x_3 x_4 + x_4^2 \rangle$$
Gröbner basis of coloring ideal

- Coloring ideal for $k = 3$:

\[
\langle x_1^3 - 1, x_2^3 - 1, x_3^3 - 1, x_4^3 - 1, x_1^2 + x_1 x_2 + x_2^2, x_1^2 + x_1 x_3 + x_3^2, \\
x_1^2 + x_1 x_4 + x_4^2, x_2^2 + x_2 x_3 + x_3^2, x_3^2 + x_3 x_4 + x_4^2 \rangle
\]

- Gröbner basis:
Gröbner basis of coloring ideal

Coloring ideal for $k = 3$:

$$\langle x_1^3 - 1, x_2^3 - 1, x_3^3 - 1, x_4^3 - 1, x_1^2 + x_1x_2 + x_2^2, x_1^2 + x_1x_3 + x_3^2, x_2^2 + x_1x_4 + x_4^2, x_2^2 + x_2x_3 + x_3^2, x_3^2 + x_3x_4 + x_4^2 \rangle$$

Gröbner basis:

$$\{ x_1 + x_3 + x_4, x_2 - x_4, x_3^2 + x_3x_4 + x_4^2, x_4^3 - 1 \}$$
Gröbner basis of coloring ideal

Coloring ideal for $k = 3$:

\[\langle x_1^3 - 1, x_2^3 - 1, x_3^3 - 1, x_4^3 - 1, x_1^2 + x_1 x_2 + x_2^2, x_1^2 + x_1 x_3 + x_3^2, x_2^2 + x_1 x_4 + x_4^2, x_2^2 + x_2 x_3 + x_3^2, x_3^2 + x_3 x_4 + x_4^2 \rangle \]

Gröbner basis:

\{ x_1 + x_3 + x_4, x_2 - x_4, x_3^2 + x_3 x_4 + x_4^2, x_4^3 - 1 \}
Gröbner basis of coloring ideal

- Coloring ideal for $k = 3$:
 \[
 \langle x_1^3 - 1, x_2^3 - 1, x_3^3 - 1, x_4^3 - 1, x_1^2 + x_1 x_2 + x_2^2, x_1^2 + x_1 x_3 + x_3^2, \\
 x_1^2 + x_1 x_4 + x_4^2, x_2^2 + x_2 x_3 + x_3^2, x_3^2 + x_3 x_4 + x_4^2 \rangle
 \]

- Gröbner basis:
 \[
 \{ x_1 + x_3 + x_4, x_2 - x_4, x_3^2 + x_3 x_4 + x_4^2, x_4^3 - 1 \}
 \]
Gröbner basis of coloring ideal

Coloring ideal for \(k = 3 \):

\[
\langle x_1^3 - 1, x_2^3 - 1, x_3^3 - 1, x_4^3 - 1, x_1^2 + x_1 x_2 + x_2^2, x_1^2 + x_1 x_3 + x_3^2, \\
x_1^2 + x_1 x_4 + x_4^2, x_2^2 + x_2 x_3 + x_3^2, x_3^2 + x_3 x_4 + x_4^2 \rangle
\]

Gröbner basis:

\[
\{ x_1 + x_3 + x_4, x_2 - x_4, x_3^2 + x_3 x_4 + x_4^2, x_4^3 - 1 \}
\]
Gröbner basis of coloring ideal

Coloring ideal for $k = 3$:

$$\langle x_1^3 - 1, x_2^3 - 1, x_3^3 - 1, x_4^3 - 1, x_1^2 + x_1 x_2 + x_2^2, x_1^2 + x_1 x_3 + x_3^2, x_1^2 + x_1 x_4 + x_4^2, x_2^2 + x_2 x_3 + x_3^2, x_3^2 + x_3 x_4 + x_4^2 \rangle$$

Gröbner basis:

$$\{ x_1 + x_3 + x_4, x_2 - x_4, x_3^2 + x_3 x_4 + x_4^2, x_4^3 - 1 \}$$
Computing Gröbner bases

- Buchberger’s algorithm works but is slow
- Computation of Gröbner bases is EXPSPACE-complete [Kühnle and Mayr 1996]
- Even hard to write down: maximum degree can be large
- Mayr, Ritscher (2010): upper bound on maximum degree for r-dimensional ideal, n generators of degree d:

$$2 \left(\frac{1}{2} d^{n-r} + d \right)^{2^r}$$

- Ritscher (2009): example attaining maximum degree d^n
- In practice, special cases often tractable
A graph is **chordal** if it has no induced cycle of length ≥ 4.
Definition

A graph is **chordal** if it has no induced cycle of length ≥ 4.

![Chordal graph example](image)
A graph is **chordal** if it has no induced cycle of length ≥ 4.

![Diagram of a chordal graph](image)
A graph is **chordal** if it has no induced cycle of length ≥ 4.

![Graph diagram](image-url)
Chordal graph algorithm

Definition

A graph is chordal if it has no induced cycle of length ≥ 4.

- Chordal graphs admit a perfect elimination ordering:
 When a vertex is added, its neighborhood forms a clique
Definition

A graph is \textit{chordal} if it has no induced cycle of length ≥ 4.

- Chordal graphs admit a perfect elimination ordering:
 When a vertex is added, its neighborhood forms a clique.
A graph is **chordal** if it has no induced cycle of length ≥ 4.

Chordal graphs admit a perfect elimination ordering:
When a vertex is added, its neighborhood forms a clique.
A graph is **chordal** if it has no induced cycle of length \(\geq 4 \).

Chordal graphs admit a perfect elimination ordering: When a vertex is added, its neighborhood forms a clique.
Chordal graph algorithm

Definition

A graph is **chordal** if it has no induced cycle of length \(\geq 4 \).

- Chordal graphs admit a perfect elimination ordering:
 - When a vertex is added, its neighborhood forms a clique

[Diagram of a chordal graph with vertices 1, 2, 3, and 4 connected in a triangle and an additional edge to vertex 3.]
Chordal graph algorithm

Definition

A graph is **chordal** if it has no induced cycle of length \(\geq 4 \).

- Chordal graphs admit a perfect elimination ordering:
 When a vertex is added, its neighborhood forms a clique.
A graph is chordal if it has no induced cycle of length ≥ 4.

Chordal graphs admit a perfect elimination ordering:
When a vertex is added, its neighborhood forms a clique.
Definition

A graph is **chordal** if it has no induced cycle of length ≥ 4.

- Chordal graphs admit a perfect elimination ordering: When a vertex is added, its neighborhood forms a clique.
Chordal graph algorithm

Definition

A graph is **chordal** if it has no induced cycle of length ≥ 4.

- Chordal graphs admit a perfect elimination ordering: When a vertex is added, its neighborhood forms a clique.
Theorem (DMPRRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $I_k(G)$, and it can be found efficiently.
Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $I_k(G)$, and it can be found efficiently.
Theorem (DMPRRSSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $\mathcal{I}_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$) : \$
u_1(x_1),\$
Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $I_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$): \{\nu_1(x_1), S_3(x_1, x_2)\},
Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $\mathcal{I}_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$): $\{\nu_1(x_1), S_3(x_1, x_2), S_2(x_1, x_2, x_3)\}$.
Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $I_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$): \[
\{ \nu_1(x_1), S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4) \},
\]
Chordal graph algorithm

Theorem (DMPRRSSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $\mathcal{I}_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$) : $\{\nu_1(x_1), S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5)\}$.
Theorem (DMPRRSSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $I_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$): $\{\nu_1(x_1), S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5), S_3(x_5, x_6)\}$
Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $\mathcal{I}_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$): \[
\{ \nu_1(x_1), S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5), S_3(x_5, x_6), S_3(x_6, x_7) \},
\]
Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $\mathcal{I}_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$) : $\{\nu_1(x_1), S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5), S_3(x_5, x_6), S_3(x_6, x_7), S_2(x_6, x_7, x_8)\}$
Chordal graph algorithm

Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $\mathcal{I}_k(G)$, and it can be found efficiently.

Gröbner basis ($k = 4$): \[
\{ \nu_1(x_1), S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5), S_3(x_5, x_6), S_3(x_6, x_7), S_2(x_6, x_7, x_8) \} \]

\[S_m(y_1, \ldots, y_t) := \sum_{1 \leq j_1 \leq \cdots \leq j_m \leq t} y_{j_1} \cdots y_{j_m}, \]
Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $\mathcal{I}_k(G)$, and it can be found efficiently.

Complete homogeneous symmetric polynomials:

$$S_m(y_1, \ldots, y_t) := \sum_{1 \leq j_1 \leq \ldots \leq j_m \leq t} y_{j_1} \cdots y_{j_m}.$$
Chordal graph algorithm

Theorem (DMPRRSSS)

Let G be a chordal graph on n vertices. Then there exists a Gröbner basis of size n for $I_k(G)$, and it can be found efficiently.

Complete homogeneous symmetric polynomials:

$$S_m(y_1, \ldots, y_t) := \sum_{1 \leq j_1 \leq \cdots \leq j_m \leq t} y_{j_1} \cdots y_{j_m}.$$

Lemma

For a positive integer k, let $\zeta_1, \zeta_2, \ldots, \zeta_k$ be the kth roots of unity in some order. Then, for every $k > r$,

$$S_m(\zeta_1, \zeta_2, \ldots, \zeta_{k-m}, x) = (x - \zeta_{k-m+1})(x - \zeta_{k-m+2}) \cdots (x - \zeta_k).$$
Chordal graph algorithm

\[S_m(y_1, \ldots, y_t) := \sum_{1 \leq j_1 \leq \cdots \leq j_m \leq t} y_{j_1} \cdots y_{j_m}. \]

Lemma

For a positive integer \(k \), let \(\zeta_1, \zeta_2, \ldots, \zeta_k \) be the \(k \)th roots of unity in some order. Then, for every \(k > r \),

\[S_m(\zeta_1, \zeta_2, \ldots, \zeta_{k-m}, x) = (x - \zeta_{k-m+1})(x - \zeta_{k-m+2}) \cdots (x - \zeta_k). \]

Proof of algorithm

- Perfect elimination order \(\Rightarrow \) polynomial \(S_m(x) \) for each vertex
Chordal graph algorithm

\[S_m(y_1, \ldots, y_t) := \sum_{1 \leq j_1 \leq \cdots \leq j_m \leq t} y_{j_1} \cdots y_{j_m}. \]

Lemma

For a positive integer \(k \), let \(\zeta_1, \zeta_2, \ldots, \zeta_k \) be the \(k \)th roots of unity in some order. Then, for every \(k > r \),

\[S_m(\zeta_1, \zeta_2, \ldots, \zeta_{k-m}, x) = (x - \zeta_{k-m+1})(x - \zeta_{k-m+2}) \cdots (x - \zeta_k). \]

Proof of algorithm

- Perfect elimination order \(\Rightarrow \) polynomial \(S_m(x) \) for each vertex
- These polynomials generate graph coloring ideal by induction
Chordal graph algorithm

\[S_m(y_1, \ldots, y_t) := \sum_{1 \leq j_1 \leq \cdots \leq j_m \leq t} y_{j_1} \cdots y_{j_m}. \]

Lemma

For a positive integer \(k \), let \(\zeta_1, \zeta_2, \ldots, \zeta_k \) be the \(k \)th roots of unity in some order. Then, for every \(k > r \),

\[S_m(\zeta_1, \zeta_2, \ldots, \zeta_{k-m}, x) = (x - \zeta_{k-m+1})(x - \zeta_{k-m+2}) \cdots (x - \zeta_k). \]

Proof of algorithm

- Perfect elimination order \(\Rightarrow \) polynomial \(S_m(x) \) for each vertex
- These polynomials generate graph coloring ideal by induction
- Form Gröbner basis, by considering \(S\)-pairs
Hilbert’s Nullstellensatz

Theorem (Hilbert)

Given a field \(\mathbb{K} \) and \(f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n] \), the system
\[
f_1 = f_2 = \cdots = f_s = 0
\]
has no solutions in the algebraic closure of \(\mathbb{K} \) iff there exist polynomials \(\beta_1, \ldots, \beta_s \in \mathbb{K}[x_1, \ldots, x_n] \) such that
\[
1 = \sum_{i=1}^{s} \beta_i f_i.
\]

The set \(\{\beta_i\} \) is a Nullstellensatz certificate.
Hilbert’s Nullstellensatz

Certificate of infeasibility for 3-coloring ideal:

\[1 = \nu_4(x) + (-x_1) \cdot \eta_{12}(x) + (-x_2 - x_4) \cdot \eta_{13}(x) + (-x_1) \cdot \eta_{14}(x) \\
+ (-x_1 - x_4) \cdot \eta_{23}(x) + (-x_2) \cdot \eta_{24}(x) + (-x_1 - x_2) \cdot \eta_{34}(x) \]
Hilbert’s Nullstellensatz

Gröbner basis for coloring ideal:

\{1\}

Certificate of infeasibility for 3-coloring ideal:

\[1 = \nu_4(x) + (-x_1) \cdot \eta_{12}(x) + (-x_2 - x_4) \cdot \eta_{13}(x) + (-x_1) \cdot \eta_{14}(x) \]
\[+ (-x_1 - x_4) \cdot \eta_{23}(x) + (-x_2) \cdot \eta_{24}(x) + (-x_1 - x_2) \cdot \eta_{34}(x) \]
Theorem (Hilbert)

Given a field \mathbb{K} and $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$, the system

$$f_1 = f_2 = \cdots = f_s = 0$$

has no solutions in the algebraic closure of \mathbb{K} iff there exist polynomials $\beta_1, \ldots, \beta_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$1 = \sum_{i=1}^{s} \beta_i f_i.$$

The set $\{\beta_i\}$ is a Nullstellensatz certificate.

- Degree of the certificate is minimum degree of the β_i
Hilbert’s Nullstellensatz

Theorem (Hilbert)

Given a field \mathbb{K} and $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$, the system $f_1 = f_2 = \cdots = f_s = 0$ has no solutions in the algebraic closure of \mathbb{K} iff there exist polynomials $\beta_1, \ldots, \beta_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$1 = \sum_{i=1}^{s} \beta_i f_i.$$

The set $\{\beta_i\}$ is a *Nullstellensatz certificate*.

- **Degree** of the certificate is minimum degree of the β_i.
- If degree small, find certificate by brute force over finite field \mathbb{K}.

David Rolnick (MIT)
Graph-coloring ideals
ISSAC 2015 13/22
Certificates for $I_k(G)$

Theorem (DMPRRRSSS)

Given a non-k-colorable graph G, let d be the minimum degree of a Nullstellensatz certificate.

- $d \equiv 1 \mod k$
- $d \geq k + 1$ if $k > 3$.
Certificates for $\mathcal{I}_k(G)$

Theorem (DMPRRSSSS)

Given a non-k-colorable graph G, let d be the minimum degree of a Nullstellensatz certificate.

- $d \equiv 1 \mod k$
- $d \geq k + 1$ if $k > 3$.

- Brute force is inefficient for every G
Certificates for \(I_k(G)\)

Example: degree-4 certificate over \(\mathbb{F}_2\):

\[
1 = (1 + x_0x_2x_4 + x_0x_2x_6 + x_0x_3x_4 + x_0x_3x_5 + x_0x_4x_5 + x_0x_4x_6 + x_1^2x_4 + x_1^2x_6 \\
+ x_1x_3x_4 + x_1x_3x_5 + x_1x_5x_6 + x_2x_3x_4 + x_2x_3x_6 + x_3x_5x_6 + x_4x_5x_6) (x_0^3 + 1) \\
+ (x_1 + x_3 + x_4 + x_0^2x_1x_4 + x_0^2x_1x_6 + x_0^2x_2x_4 + x_0^2x_2x_6 + x_0^2x_3x_4 + x_0^2x_3x_5 \\
+ x_0^2x_5x_6 + x_0x_1x_3x_4 + x_0x_1x_3x_6 + x_0x_2x_3x_4 + x_0x_2x_3x_6 + x_0x_2x_4x_5 + x_0x_2x_4x_6 \\
+ x_0x_2x_5x_6 + x_0x_3x_4x_5 + x_0x_3x_4x_6 + x_0x_3x_5x_6 + x_0x_4x_5x_6 + \\
+ x_1x_3x_4x_5 + x_1x_3x_4x_6 + x_1x_4x_5x_6 + x_2x_3x_4x_5 + x_2x_3x_4x_6 + (x_0^2 + x_0x_1 + x_1^2) (x_0^2 + x_0x_2 + x_2^2) + \cdots
\]
Certificates for $I_k(G)$

Example: degree-4 certificate over \mathbb{F}_2:

$$1 = (1 + x_0 x_2 x_4 + x_0 x_2 x_6 + x_0 x_3 x_4 + x_0 x_3 x_5 + x_0 x_4 x_5 + x_0 x_4 x_6 + x_1^2 x_4 + x_1^2 x_6$$
$$+ x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_5 x_6 + x_2 x_3 x_4 + x_2 x_3 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6)(x_0^3 + 1)$$
$$+ (x_1 + x_3 + x_4 + x_0^2 x_1 x_4 + x_0^2 x_1 x_6 + x_0^2 x_2 x_4 + x_0^2 x_2 x_6 + x_0^2 x_3 x_4 + x_0^2 x_3 x_5$$
$$+ x_0^2 x_5 x_6 + x_0 x_1 x_3 x_4 + x_0 x_1 x_3 x_6 + x_0 x_2 x_3 x_4 + x_0 x_2 x_3 x_6 + x_0 x_2 x_4 x_5 + x_0 x_2 x_4 x_6$$
$$+ x_0 x_2 x_5 x_6 + x_0 x_3 x_4 x_5 + x_0 x_3 x_4 x_6 + x_0 x_3 x_5 x_6 + x_0 x_4 x_5 x_6 +$$
$$+ x_1 x_3 x_4 x_5 + x_1 x_3 x_4 x_6 + x_1 x_4 x_5 x_6 + x_2 x_3 x_4 x_5 + x_2 x_3 x_4 x_6)(x_0^2 + x_0 x_1 + x_1^2)$$
$$+ (x_1 + x_3 + x_4 + x_6 + x_0^2 x_1 x_4 + x_0^2 x_1 x_6 + x_0^2 x_4 x_5 + x_0^2 x_4 x_6 + x_0^2 x_5 x_6$$
$$+ x_0 x_1 x_3 x_4 + x_0 x_1 x_3 x_6 + x_0 x_3 x_4 x_5 + x_0 x_3 x_4 x_6 + x_1 x_3 x_4 x_5 + x_1 x_3 x_4 x_6$$
$$+ x_1 x_4 x_5 x_6 + x_3 x_4 x_5 x_6)(x_0^2 + x_0 x_2 + x_2^2) + \cdots
Certificates for $I_k(G)$

Example: degree-4 certificate over \mathbb{F}_2:

$1 = (1 + x_0 x_2 x_4 + x_0 x_2 x_6 + x_0 x_3 x_4 + x_0 x_3 x_5 + x_0 x_4 x_5 + x_0 x_4 x_6 + x_1^2 x_4 + x_1^2 x_6$
\[\begin{align*}
+ x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_5 x_6 + x_2 x_3 x_4 + x_2 x_3 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6) (x_0^3 + 1) \\
+ (x_1 + x_3 + x_4 + x_0^2 x_1 x_4 + x_0^2 x_1 x_6 + x_0^2 x_2 x_4 + x_0^2 x_2 x_6 + x_0^2 x_3 x_4 + x_0^2 x_3 x_5$ \\
\[\begin{align*}
+ x_0^2 x_5 x_6 + x_0 x_1 x_3 x_4 + x_0 x_1 x_3 x_6 + x_0 x_2 x_3 x_4 + x_0 x_2 x_3 x_6 + x_0 x_2 x_4 x_5 + x_0 x_2 x_4 x_6 \\
+ x_0 x_2 x_5 x_6 + x_0 x_3 x_4 x_5 + x_0 x_3 x_4 x_6 + x_0 x_3 x_5 x_6 + x_0 x_4 x_5 x_6 + \\
+ x_1 x_3 x_4 x_5 + x_1 x_3 x_4 x_6 + x_1 x_4 x_5 x_6 + x_2 x_3 x_4 x_5 + x_2 x_3 x_4 x_6) (x_0^2 + x_0 x_1 + x_1^2) \\
+ (x_1 + x_3 + x_4 + x_6 + x_0^2 x_1 x_4 + x_0^2 x_1 x_6 + x_0^2 x_4 x_5 + x_0^2 x_4 x_6 + x_0^2 x_5 x_6 \\
+ x_0 x_1 x_3 x_4 + x_0 x_1 x_3 x_6 + x_0 x_3 x_4 x_5 + x_0 x_3 x_4 x_6 + x_1 x_3 x_4 x_5 + x_1 x_3 x_4 x_6 \\
+ x_1 x_4 x_5 x_6 + x_3 x_4 x_5 x_6) (x_0^2 + x_0 x_2 + x_2^2) + \cdots
\end{align*}\]
Certificates for \(\mathcal{I}_k(G) \)

Example: degree-4 certificate over \(\mathbb{F}_2 \):

\[
1 = (1 + x_0 x_2 x_4 + x_0 x_2 x_6 + x_0 x_3 x_4 + x_0 x_3 x_5 + x_0 x_4 x_5 + x_0 x_4 x_6 + x_1^2 x_4 + x_1^2 x_6 + x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_5 x_6 + x_2 x_3 x_4 + x_2 x_3 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6)(x_0^3 + 1)
+ (x_1 + x_3 + x_4 + x_0^2 x_1 x_4 + x_0^2 x_1 x_6 + x_0^2 x_2 x_4 + x_0^2 x_2 x_6 + x_0^2 x_3 x_4 + x_0^2 x_3 x_5 + x_0^2 x_5 x_6 + x_0 x_1 x_3 x_4 + x_0 x_1 x_3 x_6 + x_0 x_2 x_3 x_4 + x_0 x_2 x_3 x_6 + x_0 x_2 x_4 x_5 + x_0 x_2 x_4 x_6 + x_0 x_3 x_4 x_5 + x_0 x_3 x_4 x_6 + x_0 x_3 x_5 x_6 + x_0 x_4 x_5 x_6)
+ (x_1 x_3 x_4 x_5 + x_1 x_3 x_4 x_6 + x_1 x_4 x_5 x_6 + x_2 x_3 x_4 x_5 + x_2 x_3 x_4 x_6)(x_0^2 + x_0 x_1 + x_1^2)
+ (x_1 + x_3 + x_4 + x_6 + x_0^2 x_1 x_4 + x_0^2 x_1 x_6 + x_0^2 x_4 x_5 + x_0^2 x_4 x_6 + x_0^2 x_5 x_6 + x_0 x_1 x_3 x_4 + x_0 x_1 x_3 x_6 + x_0 x_3 x_4 x_5 + x_0 x_3 x_4 x_6 + x_1 x_3 x_4 x_5 + x_1 x_3 x_4 x_6 + x_1 x_4 x_5 x_6 + x_3 x_4 x_5 x_6)(x_0^2 + x_0 x_2 + x_2^2) + \cdots
\]
Certificates for $\mathcal{I}_k(G)$

Example: degree-4 certificate over \mathbb{F}_2:

$$1 = (1 + x_0x_2x_4 + x_0x_2x_6 + x_0x_3x_4 + x_0x_3x_5 + x_0x_4x_5 + x_0x_4x_6 + x_1^2x_4 + x_1^2x_6$$
$$\quad + x_1x_3x_4 + x_1x_3x_5 + x_1x_5x_6 + x_2x_3x_4 + x_2x_3x_5 + x_3x_5x_6 + x_4x_5x_6)(x_0^3 + 1)$$
$$\quad + (x_1 + x_3 + x_4 + x_0^2x_1x_4 + x_0^2x_1x_6 + x_0^2x_2x_4 + x_0^2x_2x_6 + x_0^2x_3x_4 + x_0^2x_3x_5$$
$$\quad + x_0^2x_5x_6 + x_0x_1x_3x_4 + x_0x_1x_3x_6 + x_0x_2x_3x_4 + x_0x_2x_3x_5 + x_0x_2x_4x_5 + x_0x_2x_4x_6$$
$$\quad + x_0x_2x_5x_6 + x_0x_3x_4x_5 + x_0x_3x_4x_6 + x_0x_3x_5x_6 + x_0x_4x_5x_6 +$$
$$\quad + x_1x_3x_4x_5 + x_1x_3x_4x_6 + x_1x_4x_5x_6 + x_2x_3x_4x_5 + x_2x_3x_4x_6 + x_2x_3x_4x_6 + x_2x_3x_4x_6)(x_0^2 + x_0x_1 + x_1^2)$$
$$\quad + (x_1 + x_3 + x_4 + x_6 + x_0^2x_1x_4 + x_0^2x_1x_6 + x_0^2x_4x_5 + x_0^2x_4x_6 + x_0^2x_5x_6$$
$$\quad + x_0x_1x_3x_4 + x_0x_1x_3x_6 + x_0x_3x_4x_5 + x_0x_3x_4x_6 + x_1x_3x_4x_5 + x_1x_3x_4x_6$$
$$\quad + x_1x_4x_5x_6 + x_2x_3x_4x_5x_6 + x_3x_4x_5x_6)(x_0^2 + x_0x_2 + x_2^2) + \cdots
Certificates for $\mathcal{I}_k(G)$

Theorem (DMPRRSSS)

Given a non-k-colorable graph G, let d be the minimum degree of a certificate.

- $d \equiv 1 \mod k$
- $d \geq k + 1$ if $k > 3$.

Computation over F_p possible only if p, k relatively prime.
Certificates for $I_k(G)$

Theorem (DMPRRSSS)

Given a non-k-colorable graph G, let d be the minimum degree of a certificate.

- $d \equiv 1 \mod k$
- $d \geq k + 1$ if $k > 3$.

<table>
<thead>
<tr>
<th>Graph K_n</th>
<th>k</th>
<th>Possible degrees</th>
<th>F_2</th>
<th>F_3</th>
<th>F_5</th>
<th>F_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_4</td>
<td>3</td>
<td>1, 4, 7, 10, ...</td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>K_5</td>
<td>4</td>
<td>5, 9, 13, ...</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>K_6</td>
<td>5</td>
<td>6, 11, 16, ...</td>
<td>6</td>
<td>6</td>
<td>–</td>
<td>11</td>
</tr>
<tr>
<td>K_7</td>
<td>6</td>
<td>7, 13, 19, ...</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>K_8</td>
<td>7</td>
<td>8, 15, 22, ...</td>
<td>8</td>
<td>≥ 15</td>
<td>≥ 15</td>
<td>–</td>
</tr>
<tr>
<td>K_9</td>
<td>8</td>
<td>9, 17, 25, ...</td>
<td>–</td>
<td>≥ 17</td>
<td>≥ 17</td>
<td>≥ 17</td>
</tr>
<tr>
<td>K_{10}</td>
<td>9</td>
<td>10, 19, 28, ...</td>
<td>≥ 19</td>
<td>–</td>
<td>≥ 19</td>
<td>≥ 19</td>
</tr>
<tr>
<td>K_{11}</td>
<td>10</td>
<td>11, 21, 31, ...</td>
<td>–</td>
<td>≥ 21</td>
<td>–</td>
<td>≥ 21</td>
</tr>
</tbody>
</table>
Certificates for $\mathcal{I}_k(G)$

Theorem (DMPRRSSS)

Given a non-k-colorable graph G, let d be the minimum degree of a certificate.

- $d \equiv 1 \mod k$
- $d \geq k + 1$ if $k > 3$.

<table>
<thead>
<tr>
<th>Graph</th>
<th>k</th>
<th>Possible degrees</th>
<th>F_2</th>
<th>F_3</th>
<th>F_5</th>
<th>F_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_4</td>
<td>3</td>
<td>1, 4, 7, 10, ...</td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>K_5</td>
<td>4</td>
<td>5, 9, 13, ...</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>K_6</td>
<td>5</td>
<td>6, 11, 16, ...</td>
<td>6</td>
<td>6</td>
<td>–</td>
<td>11</td>
</tr>
<tr>
<td>K_7</td>
<td>6</td>
<td>7, 13, 19, ...</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>K_8</td>
<td>7</td>
<td>8, 15, 22, ...</td>
<td>8</td>
<td>≥ 15</td>
<td>≥ 15</td>
<td>–</td>
</tr>
<tr>
<td>K_9</td>
<td>8</td>
<td>9, 17, 25, ...</td>
<td>–</td>
<td>≥ 17</td>
<td>≥ 17</td>
<td>≥ 17</td>
</tr>
<tr>
<td>K_{10}</td>
<td>9</td>
<td>10, 19, 28, ...</td>
<td>≥ 19</td>
<td>–</td>
<td>≥ 19</td>
<td>≥ 19</td>
</tr>
<tr>
<td>K_{11}</td>
<td>10</td>
<td>11, 21, 31, ...</td>
<td>–</td>
<td>≥ 21</td>
<td>–</td>
<td>≥ 21</td>
</tr>
</tbody>
</table>

- Computation over \mathbb{F}_p possible only if p, k relatively prime
Certificates for $\mathcal{I}_k(G)$

Conjecture

For every field \mathbb{K}, the minimum degree of a k-coloring certificate grows superlinearly in k.

<table>
<thead>
<tr>
<th>Graph K_n</th>
<th>k</th>
<th>Possible degrees</th>
<th>F_2</th>
<th>F_3</th>
<th>F_5</th>
<th>F_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_4</td>
<td>3</td>
<td>$1, 4, 7, 10, \ldots$</td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>K_5</td>
<td>4</td>
<td>$5, 9, 13, \ldots$</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>K_6</td>
<td>5</td>
<td>$6, 11, 16, \ldots$</td>
<td>6</td>
<td>6</td>
<td>–</td>
<td>11</td>
</tr>
<tr>
<td>K_7</td>
<td>6</td>
<td>$7, 13, 19, \ldots$</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>K_8</td>
<td>7</td>
<td>$8, 15, 22, \ldots$</td>
<td>8</td>
<td>≥ 15</td>
<td>≥ 15</td>
<td>–</td>
</tr>
<tr>
<td>K_9</td>
<td>8</td>
<td>$9, 17, 25, \ldots$</td>
<td>–</td>
<td>≥ 17</td>
<td>≥ 17</td>
<td>≥ 17</td>
</tr>
<tr>
<td>K_{10}</td>
<td>9</td>
<td>$10, 19, 28, \ldots$</td>
<td>≥ 19</td>
<td>–</td>
<td>≥ 19</td>
<td>≥ 19</td>
</tr>
<tr>
<td>K_{11}</td>
<td>10</td>
<td>$11, 21, 31, \ldots$</td>
<td>–</td>
<td>≥ 21</td>
<td>–</td>
<td>≥ 21</td>
</tr>
</tbody>
</table>
Inapproximability results

Definition

Given a set of polynomials \(f_i \) and an integer \(c \).
An independent set of variables do not pairwise co-occur in any \(f_i \).

- **Gröbner problem**: Find a Gröbner basis.

Theorem (DMPRRSSS)

The strong \(c \)-partial Gröbner problem is NP-hard for every \(c \).
Simpler proof holds for the weak \(c \)-partial Gröbner problem.
Inapproximability results

Definition

Given a set of polynomials f_i and an integer c. An independent set of variables do not pairwise co-occur in any f_i.

- **Gröbner problem**: Find a Gröbner basis.
- **Weak c-partial Gröbner problem**: Throw away c variables and the polynomials containing them, then find a Gröbner basis.
- **Strong c-partial Gröbner problem**: Throw away c independent sets of variables and the polynomials containing them, then find a Gröbner basis.
Inapproximability results

Definition

Given a set of polynomials f_i and an integer c. An independent set of variables do not pairwise co-occur in any f_i.

- **Gröbner problem**: Find a Gröbner basis.
- **Weak c-partial Gröbner problem**: Throw away c variables and the polynomials containing them, then find a Gröbner basis.
- **Strong c-partial Gröbner problem**: Throw away c independent sets of variables and the polynomials containing them, then find a Gröbner basis.

Theorem (DMPRRSSS)

The strong c-partial Gröbner problem is NP-hard for every c. A simpler proof holds for the weak c-partial Gröbner problem.
Inapproximability results

Definition

Given a set of polynomials \(f_i \) and an integer \(c \).

An **independent set** of variables do not pairwise co-occur in any \(f_i \).

- **Gröbner problem**: Find a Gröbner basis.

- **Weak \(c \)-partial Gröbner problem**: Throw away \(c \) variables and the polynomials containing them, then find a Gröbner basis.

- **Strong \(c \)-partial Gröbner problem**: Throw away \(c \) independent sets of variables and the polynomials containing them, then find a Gröbner basis.

Theorem (DMPRRSSS)

The strong \(c \)-partial Gröbner problem is NP-hard for every \(c \).
Inapproximability results

Definition

Given a set of polynomials f_i and an integer c. An independent set of variables do not pairwise co-occur in any f_i.

- **Gröbner problem**: Find a Gröbner basis.
- **Weak c-partial Gröbner problem**: Throw away c variables and the polynomials containing them, then find a Gröbner basis.
- **Strong c-partial Gröbner problem**: Throw away c independent sets of variables and the polynomials containing them, then find a Gröbner basis.

Theorem (DMPRRSSS)

The strong c-partial Gröbner problem is NP-hard for every c.

- Simpler proof holds for the weak c-partial Gröbner problem
Theorem (DMPRRSSS)

The strong c-partial Gröbner problem is NP-hard for every c.
Inapproximability results

Theorem (DMPRRSSS)

The strong c-partial Gröbner problem is NP-hard for every c.

Proof idea:

- Remove c independent sets of vertices
- Corresponds to independent sets of variables in coloring ideal
- Gröbner basis \Rightarrow k-coloring of remaining vertices
- Gives $(k + c)$-coloring of graph
Inapproximability results

Theorem (DMPRRSSS)

The strong c-partial Gröbner problem is NP-hard for every c.

Proof idea:
- Remove c independent sets of vertices
- Corresponds to independent sets of variables in coloring ideal
- Gröbner basis \Rightarrow k-coloring of remaining vertices
- Gives $(k + c)$-coloring of graph

Theorem (Khanna, Linial, Safra 1993)

It is NP-hard to color a k-chromatic graph with at most $k + 2 \left\lfloor \frac{k}{3} \right\rfloor - 1$ colors.
Technical details

- Certain monomial orders are elimination orders
- Every lexicographic order \(x_1 > \cdots > x_n \) is an elimination order
- For an elimination order, the Gröbner basis allows back-substitution, e.g.

\[
\begin{align*}
 x_1^3 + x_2 x_3 - x_3^2 - 1, \\
 x_2^3 - x_2 + x_3^2 + 1, \\
 x_2 x_3^2 - 2x_3^3 + x_3, \\
 x_3^3 + 1.
\end{align*}
\]
Certain monomial orders are elimination orders

Every lexicographic order $x_1 > \cdots > x_n$ is an elimination order

For an elimination order, the Gröbner basis allows back-substitution, e.g.

\begin{align*}
 x_1^3 + x_2 x_3 - x_3^2 - 1, \\
 x_2^3 - x_2 + x_3^2 + 1, \\
 x_2 x_3^2 - 2x_3^3 + x_3, \\
 x_3^3 + 1.
\end{align*}

Problem: What if one cannot solve for roots of unity, e.g. over a field other than \mathbb{R}?
Technical details

- Certain monomial orders are elimination orders.
- Every lexicographic order $x_1 > \cdots > x_n$ is an elimination order.
- For an elimination order, the Gröbner basis allows back-substitution, e.g.
 \[x_1^3 + x_2 x_3 - x_3^2 - 1, \]
 \[x_2^3 - x_2 + x_2^2 + 1, \]
 \[x_2 x_3^2 - 2 x_3^3 + x_3, \]
 \[x_3^3 + 1. \]

- Problem: What if one cannot solve for roots of unity, e.g. over a field other than \mathbb{R}?
- Solution: Do not solve numerically, merely symbolically.
Summary of results

- Polytime algorithm finding Gröbner basis of graph-coloring ideal in chordal graphs

- Complexity of Nullstellensatz certificate for general graphs

- Hardness of approximate Gröbner basis computation, \(\iff \) from hardness of approximate \(k \)-coloring
Acknowledgments
This research was conducted through the AMS Mathematical Research Communities program, and was supported by the National Science Foundation under Grant Nos. DMS-1321794 and 1122374. Special thanks to Hannah Alpert, Agnes Szanto, Pablo Parrilo, Ellen Maycock, and the Simons Institute.